: 理論的な裏付けまでを含めて理解する

: 単に知識を得る

出来る:オペレーションや技術を活用できる

知る

講座の狙い

LTspiceを使ってアナログ回路技術の基本事項を学ぶ LTspiceの基本オペレーションをマスターする

到達目標

・LTspiceの基本操作 回路図入力,モデルのlib化, transient,ac,dc解析,データの簡単な解析が出来る

・インダクター

基本特性、配線インダクタンスが解る

・キャパシタ

基本特性、寄生素子と周波数特性が解る

・MOSFET, CMOSMOS inverter 単体MOSFET基本特性のを知る

inverter動作, 充放電電流, 貫通電流が解る

CMOS回路の動作スピード、消費電流の電源電圧とVt依存性が解る

ESD破壊と保護回路の動作を知る

• 伝送線路

ケーブルの仕様書から伝送線路のラダーモデル化、シミュレーション回路の作成、transient, ac解析が出来る特性インピーダンスの物理的意味、インピーダンスマッチングが解る 適正ラダー分割数が解る

プリント基板の断面形状からの伝送線路パラメータの抽出手段を知る

・Power Distribution Network(電源分配回路網) 基本概念が解る,PDNのSPICEモデル化の方法を知る ターゲットインピーダンスが解る 積層セラミックコンデンサの動的モデルを知る

•電圧源電流源

Laplace関数を使った電圧制御電圧源を使用出来る

・モデルのlib化

.lib, .sym, .modなどを使ってモデルをLTspiceにのlibに導入できる

・その他の機能

.measureコマンドの使用法が解る

・熱設計とシミュレーション 熱回路網法による熱シミュレーションの基本が解る

講座内容

- 1.セミナー概要
- ・講座の狙い
- •講座内容
- ·到達目標
- 2.SPICEについて
 - ·SPICE概要
 - ·SPICEの解析領域
 - ·SPICEのできること・できないこと
 - ・LTspiceを業務で使用する場合の注意点
- 3.LTspiceの入手とインストール
 - ・インストーラ入手とインストール
 - ・サンプル回路・ライブラリファイル構成
 - ・関連情報の入手
 - ・インストール
 - ・ツールバー
 - ・ショートカットキー
 - 注意点など
- 4.LTspiceを動かしてみよう
 - ·基本設定
 - ・講師のLTspice設定
 - ・解析回路の作成
 - ·transient解析1
 - ・CR回路の過渡現象の手計算による解析
 - ·transient解析2
 - ·ac解析
- ・グラフスケールの合わせ方
- 5.インダクタ
 - ・インダクタの構造
 - ・インダクタンスの定義
 - ・配線感間隔とインダクタンス
 - ・リードインダクタンスの近似式
 - ・シミュレーションでの注意点
- 6.キャパシタ
 - キャパシタの構造
 - ・キャパシタの等価回路と周波数特性
 - •周波数特性
 - ・参考: チップキャパシタの低ESL化
 - ・セラミックキャパシタ容量の電圧依存性

- 7.MOSFET, CMOS Inverter
 - ·MOSFETの構造
 - •電流電圧特性理論式
 - ・SPICE Level 1モデル
 - ·MOSFET (Level 3)静特性
 - ·Inverter等価回路
 - ·Inverter静特性
 - ·Inverter過渡特性
 - -貫通電流
 - -充放電電流
 - ·buffer Inverter unbuffer Inverter
 - ·Inverter 駆動能力
 - ·Inverter 消費電流
 - ring oscillator
 - ・プロセスコーナーモデル
 - ·ESD破壊
 - -HBMによる放電現象
 - -CDMによる放電現象
- 8. 伝送線路
 - ・実験とシミュレーション
 - ・実験
 - ・インピーダンス整合の基本的考え方(DC)
 - ・インピーダンス整合の基本的考え方(AC)
 - ·SPICEモデルパラメータ
 - -伝送線路モデル
 - -矩形波の周波数特性成分
 - -パラメータ算出
 - -参考: 立ち上がり時間と帯域の関係
 - ·SPICEシミュレーション
 - -解析回路作成・シミュレーション
 - -シミュレーションと実測結果比較
 - -最適分割数についての考察

最適分割数の定性的理解

最適分割数の定量的理解

伝送遠路インピーアンスを使った計算 計算結果とAC解析結果比較 -フラットケーブル以外の伝送線路SPICEモデル

解析によるパラメータ入手

電磁界解析事例(sonnet)

近似計算事例(Wcalc)

電磁界解析·近似計算結果比較

- 9. Power Distribution Network
 - •PDN
 - ・ターゲとインピーダンス
 - ・デカップリング・バイパスコンデンサ
 - •PDNのモデル化
 - ・積層セラミックコンデンサの動的モデル
- 10.SPICEにおけるモデルの違い
 - •parameter model∠behavior model
 - ·S-parameter model
 - ·IBIS model
 - ・IBIS modelの限界と新しいmodel
 - -IBIS-AMI
 - -Power Aware IBIS
- 11.電圧源・電流源の便利な使いかた
 - •電圧制御電圧源
 - -定数による利得記述
 - -テーブルによる利得記述
 - -Laplace関数による記述
 - ·behavior電流源
- 12.モデルのライブラリ化
 - ・.libと.symのあるモデルのLTspiceへの導入方法
 - ・.modだけのモデルのLTspiceへの導入方法
- 13.その他の機能
 - ·.meas
 - -.measure(グラフ読み取り・演算コマンド)
 - -rawファイルを使った.measure処理による計算
 - ・シミュレーション結果のexport
- 14.熱設計とSPICEシミュレーション
 - ・熱設計の基礎
 - 熱シミュレーション

セミナーの進め方

セミナーは事前課題①及び②と当日のwebinarで構成されています.

使用するテキストのpdfと回路図ファイルは受講者の方々に事前に配信いたします.

事前課題をお願いする理由は

- ・多くの内容を6時間程度のセミナーでお伝えするために, LTspiceの設定や基本操作をマスターしてからwebinarを受講していただく事によってセミナー時間節約を図る.
- ・著作権の問題があるため、セミナーで使用する部品メーカーのモデルファイルを事前配信できないために、 受講者にデータを事前ダウンロードしていただく。

事前課題①

LTspice基本操作のマスター

・LTspiceのダウンロード、インストール : p.12 \sim 14

·初期設定 : p.20~22

·回路図入力, transient解析, ac解析: p.23~33

p.24~33の回路のfile name: CR pulse2 ac.asc回路の作成とtransient解析,

file name: CR pulse2 ac.asc回路の作成とac解析

p.28,29などの技術的な説明や細かな内容に関してはwebinarで説明しますので事前課題対象外です.

事前課題②

モデルデータのダウンロード

- ・p.143の手順①に従って、MLCCのLTspice用ダイナミックモデルデータのダウンロードと展開.
- ・p.146の手順①に従って、ferrite beadの汎用SPICEモデルデータのダウンロードと展開.

ダウンロードしたデータを使ってモデルのライブラリ化とライブラリを使ったシミュレーションはwebinarで行います.