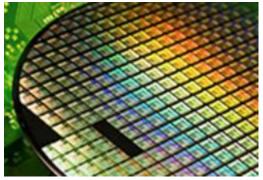

「デバイスモデリング用測定サービス」

本測定サービスは、以下の①~③のいずれのケースにおいても対応可能です。また、外部サイトや顧客サイトで極低温の測定環境を利用できる場合には、極低温下の測定もしくは測定支援(デバイス発振を抑制する測定系側での対策など)に対応します。

 モーデックが所有する測定機器や設備を使用 https://www.modech.com/service_and_products/device/

② 外部の測定サイトが所有する測定機器や設備を使用 https://www.incize.com/electrical-characterization

③ 顧客が所有する測定機器や設備を使用

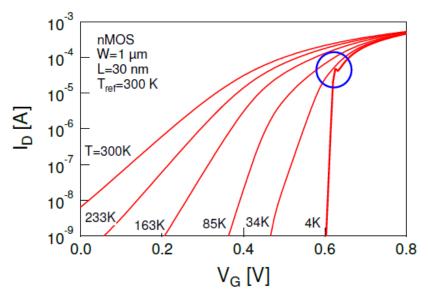


https://www.modech.com/service_and_products/analog_circuit/より引用

高精度 DC, CV 測定サービス例を示します。

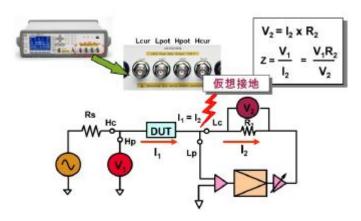
DC, CV測定

DC, CV特性は、最も基本的な特性だからこそ、高精度に測定するのがモーデックのクオリティです。 社内環境では、200V/1A、 $1fF\sim$ が、測定可能な条件ですが、必要に応じて機材や環境を準備いたしますので、ご希望の条件をお知らせください。



https://www.modech.com/service_and_products/device/より引用

DC 測定においては、半導体パラメータアナライザの積分時間を適切に調整し、ランダムノイズの影響を抑制した測定を行うことが可能です。その際、測定値の微分特性に問題ないことも確認いたします。



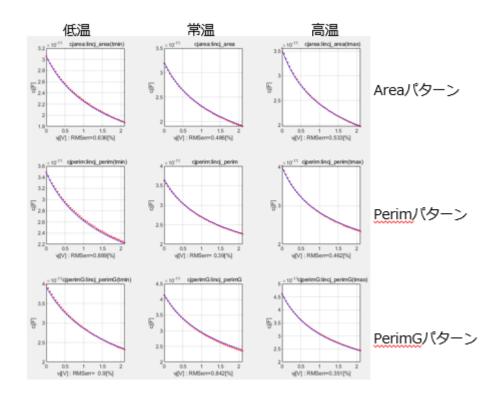
CMOS の極低温 DC 測定の場合、しきい値とその近傍の傾きに関する妥当性について論文などをもとに説明可能です。実際の測定結果に何らかの問題点が見られる際には、その問題を解決するための提案も可能です。

IEDM "Cryo-CMOS Compact Modeling"技術論文より引用

CV 測定においては、適切な周波数や平均化処理回数を選択します。

モーデック社内キャパシタのインピーダンス測定手順資料より引用

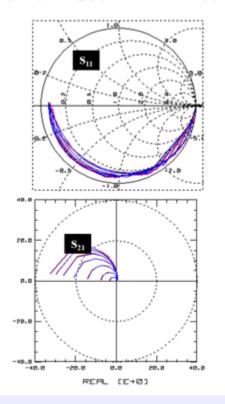
MOSFET に必要な CV 特性例を示します。

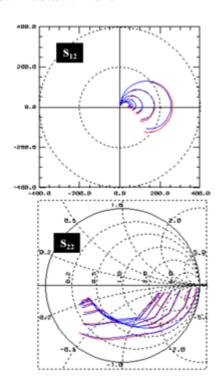

CV特性

1.拡散層容量のCV特性

- 拡散層底面がメインのCV特性
- 拡散層側面がメインのCV特性
- ゲート下拡散層側面がメインのCV特性

2.ゲート容量のCV特性


- Gate酸化膜容量がメインのCV特性
- Gateオーバーラップ容量がメインのCV特性



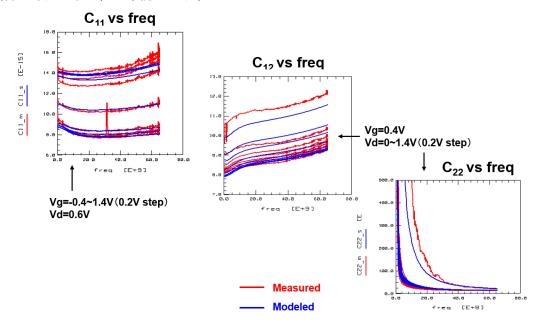
高精度Sパラメータ測定サービス例を示します。

Sパラメータ測定

Sパラメータ測定に関しては、RF (Radio Frequency) \sim ミリ波110GHzまでの測定が可能です。様々な校正手法を駆使して、デバイス本体の特性を高精度に測定いたします。

モーデックの測定技術リソース

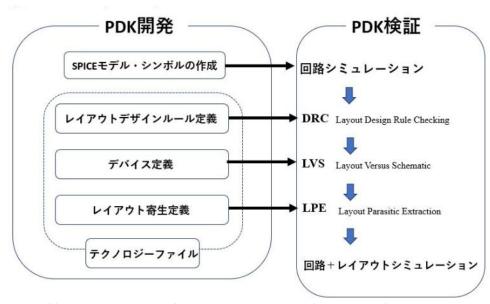
- ベクトルネットワークアナライザの測定原理を熟知したエンジニア
- SOLT / TRLキャリブレーションなどの原理を熟知したエンジニア
- AFR (Auto Fixture Removal) を含む最適なDe-embedding手法
- 高周波治具やレイアウトパターン設計技術
- 高周波プロービング技術
- 最大110GHzまでのミリ波測定技術
- 業界標準のキーサイト・テクノロジー社製PNA-X (差動対応、最大110GHz)
- どのような角度からでも測定可能な高周波対応全方位プローバー


https://www.modech.com/service_and_products/s_parameter/より引用

周波数ポイント、IF バンド幅、平均化処理回数等の基本設定は、測定結果に応じて適切な値を設定します。高精度のSパラメータ測定結果であることを証明するため、所定周波数範囲内において、キャリブレーションの再現性に問題ないことを確認します。キャリブレーション後のde-embedding 処理についての妥当性も検証します。

キーサイト・テクノロジー社の2013年11月27日コンポーネント・テスト・セミナを参考に作成

被測定物が MOSFET などのトランジスタの場合、S パラメータから高周波 gm を求め、その gm 値と DC の gm 値の一致性を確認します。10%以上の乖離がある場合には、その技術的な根拠を示します。必要に応じて、S パラメータから高周波容量 cgs、cgd、cds の周波数特性求め、周波数に対する平坦性を確認します。



PDK 用 TEG に関しては、

https://www.modech.com/service_and_products/pdkservice/

をご参照ください。

PDK のモデルを用いて、各種シミュレーション(DC、CV、S パラメータなど)を行い、測定結果がばらつきの範囲内であることと標準値との整合性を検証可能です。

 $\underline{\text{https://www.modech.com/service_and_products/pdkservice/}} \\ \texttt{より引用}$